Concessions & Eco-Certification in the Peruvian Amazon: Deforestation Impacts of Logging Rights and Restrictions

Jimena Rico-Straffon ¹ Zhenhua Wang ² Stephanie Panlasigui ³ Colby J. Loucks ⁴ Jennifer Swenson ³ Alexander Pfaff ³

¹ UC Santa Barbara

²University of Missouri

³Duke University

⁴World Wildlife Fund US

AERE Summer Conference. June 2, 2022

Estimating forest loss impacts of logging rights & FSC certification

Deforestation in the tropics is mainly driven by economic activities.

- Conservation vs. development challenge
- Conservation is not always effective

Research questions

- What happens to forest loss when we allow regulated economic activities inside the forest?
 - 1. Logging concessions- rights to extract timber (support development)
 - 2. Forest Stewardship Council (FSC) certification of logging concessions (adds sustainability restrictions)
- Concessions can do better than Protected Areas (PAs) in economic development – for sure – while no worse than weak PAs in conservation?

Theoretical forest loss impacts

1. Logging concessions (ambiguous, even in direction)

- Defend their forest assets & prevent invasions (\$\prevent loss)
- Violate concession terms & extract more than allowed (↑ loss)

2. FSC certification (serious questions if any impact)

- At the concession level
 - Sustainable-management standards should not harm forests (\$\propto loss or 0 impacts)
- At the firm level (ambiguous)
 - Sustainable-management standards should not harm forests (\$\propto loss or 0 impacts \$)
 - Firms managing multiple concessions green-wash timber (↑ loss)

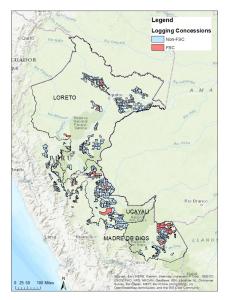
Empirics

Methods

First rigorous quasi-experimental evaluation of Peru's concessions & FSC

- considerably longer panel of forests (1986-2018) than previous lit
- new Difference-in-Differences (DID) estimators

These data and estimators allow us to:


- test for the main identification assumption (parallel trends)
- remove biases from treatment heterogeneity & contamination

Results

- 1. Logging concessions did not raise forest loss and, if anything, reduced loss slightly by warding off temporary deforestation spikes
- 2. FSC certification had no additional significant impacts on forest loss

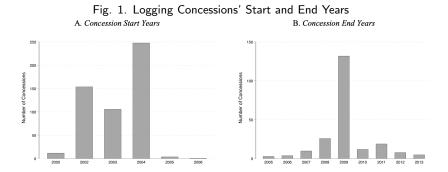
Data

- Outcome: Annual forest loss (MapBiomas Amazon Project)
- **Study period:** 1986-2018
- Study area: Peruvian Amazon
 - World's 4th largest tropical forest
 - Largest timber region in Peru
- ▶ 525 logging concessions
 - 491 uncertified
 - 34 ever FSC-certified

We constructed two annual panel data sets

Table 1. Description of Panel Data Sets

Treatment	Control	Spatial Unit	(i,t) obs.
Uncertified Concessions	Untreated*	9000×9000m pixel	119,955
FSC	Uncertified Concessions	concession	16,929

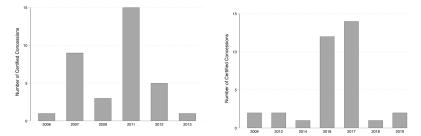

* Includes forests outside of not only concessions but also PAs and indigenous communities.

Size of concession= 5,000-40,000 ha. Size of aggregated pixel = 8,100 ha.

Logging concessions in Peru

▶ 40-year contracts allowing regulated timber extraction by private actors

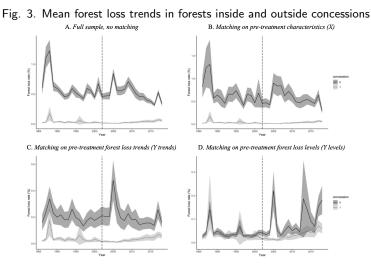
▶ 45% were cancelled during 2006-2013 due to concession contract violations


FSC Certification in Peru

- FSC certificates were granted for five years and could be renewed
- 5 certificates were suspended in 2009-2014 due to violations of FSC's standards

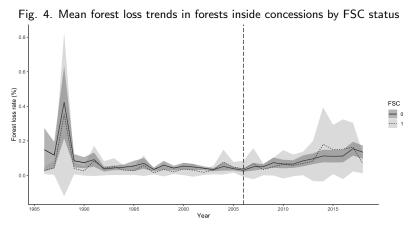
A. FSC Start Year

B. FSC End Years



Empirical Strategy

We exploit this space and time variation to identify the effects of


- 1. Uncertified concessions
- 2. FSC certification
- We use de Chaisemartin & d'Haultfoeuille's (2021a & 2022b) DID estimators (did_mutiplegt)
 - unstaggered design switching in and out of treatment
 - robust to heterogenous effects and contamination biases
 - multiple treatments
- Key identification assumption: parallel trends
- Robustness: Two-way fixed effects (TWFE), other specifications, and Hansen et al (2013) outcome

Forest loss trends: uncertified concessions

Notes: spatial unit of analysis= 9000×9000m pixels Vertical line= 2002, when first concessions were granted

Forest loss trends: FSC certification

Notes: spatial unit of analysis= concession Vertical line= 2006, when first FSC certificate was granted

Results: uncertified concessions

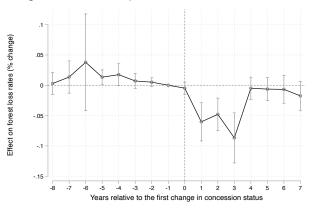


Fig. 5. Forest loss impacts of uncertified concessions

Notes: We ran *did_mutiplegt* on a matched sample of pixels (9000x9000m) p-value of placebo joint significance test= 0.11. This includes all concession cohorts except pre-2000.

Results: FSC certification

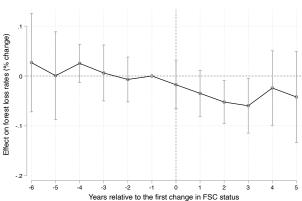
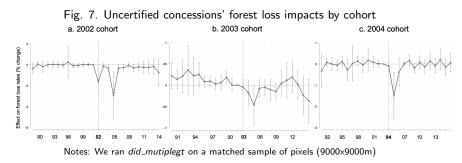



Fig. 6. Additional forest loss impacts of FSC certification

Notes: We ran *did_mutiplegt* on a concession-level panel that excludes inactive concession-year observations. P-value of placebo joint significance test= 0.22

Mechanisms

Concessions blocked temporary spikes in deforestation in the mid-2000s

Conclusions

We estimated the forest loss impacts of:

- 1. Uncertified concessions
- 2. FSC certification
- We find that concessions which have ambiguous priors —did not raise forest loss and, if anything, reduced it slightly by warding off temporary rises in external deforestation.
- While eco-certifications could reduce forest loss, we find no significant impact.
- Next: evaluate post-2000 conservation policy in Peru
 - Estimate forest impacts of four different PA types

Appendix

Estimators

de Chaisemartin & d'Haultfoeuille's (2021a) DID estimator at period t for first time switchers-in at period t - l:

$$DID_{+,t,\ell} = \sum_{g:F_{g,1}=t-\ell} \frac{N_{g,t}}{N_{t,\ell}^1} \left(Y_{g,t} - Y_{g,t-\ell-1} \right) - \sum_{g:F_{g,1}>t} \frac{N_{g,t}}{N_t^{nt}} \left(Y_{g,t} - Y_{g,t-\ell-1} \right)$$
(1)

Two-Way Fixed Effects:

$$L_{it} = \beta_0 + \beta_1 \text{ concession } _{it} + \alpha_i + \lambda_t + \varepsilon_{it}$$
(2)

$$L_{jt} = \gamma_0 + \gamma_1 \text{ concession } _{jt} + \gamma_2 FSC_{jt} + \sigma_j + \lambda_t + \mu_{jt}$$
(3)

Average Effects

TABLE 1. TWFE AND DID_L estimators of forest loss impacts of uncertified concessions and FSC certification

	Uncertif	Uncertified Concessions		FSC Certification	
	TWFE (1)	DIDL (2)	TWFE (3)	DIDL (4)	
Average effect	-0.0407	-0.0335	-0.0080	-0.0479	
S.E.	(0.0114)	(0.0094)	(0.0219)	(0.0260)	
N	32,538	22,906	16,929	11,159	
Spatial unit of analysis	pixel	pixel	concession	concession	
P-value placebo joint test ATTs receiving negative		0.1131		0.2234	
weights/ total ATTs	0/4184		4202/ 5937		
Sum of negative weights	0		-1.1007		

Robustness: Uncertified Concessions

	DIDL (1)	Observations (2)	P-value placebo joint test (3)
Adding linear cohort trends	-0.0335	22,906	0.1561
	(0.0100)		
Adding non-parametric cohort trends	-0.0336	22,906	0.1503
	(0.0100)		
Changing concession threshold to 90 percent	-0.0378	25,225	0.2657
	(0.0108)		
Changing concession threshold to 98 percent	-0.0282	15,308	0.0441
	(0.0095)		
Pre-matching the sample with two neighbors	-0.0393	17,242	0.5458
	(0.0108)		
Pre-matching the sample with one neighbor	-0.0132	15,674	0.6916
and no replacement	(0.0309)		
Eliminating concessions that ever expired	-0.0404	12,304	0.4815
	(0.0107)		
Changing the outcome to Hansen et al's (2013)	-0.0064	22,906	0.6488
tree-cover loss rates	(0.0079)		

TABLE 2. ROBUSTNESS CHECKS OF THE EFFECT OF UNCERTIFIED CONCESSIONS USING THE DID, ESTIMATOR

Robustness: FSC

	DIDL (1)	Observations (2)	P-value placebo joint test (3)
Adding linear cohort trends	-0.0283	11,159	0.2409
	(0.0183)		
Without cohort trends	-0.0147	11,159	0.3455
	(0.0179)		
With all concession-year observations	-0.0482	17,781	0.5759
	(0.0232)		
Pre-matching the data	-0.0111	2,160	0.3867
	(0.0247)		
Using Hansen et al's (2013) tree-cover	-0.0342	11,159	0.5355
loss rates as an outcome	(0.0783)		

TABLE 3. ROBUSTNESS CHECKS OF THE EFFECT OF FSC CERTIFICATION USING THE \mbox{DID}_L estimator

Hansen et al's (2013) tree cover loss

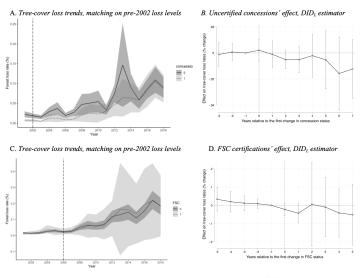


FIGURE A1. TREE-COVER LOSS TRENDS AND EFFECTS WITH HANSEN ET AL (2013) DATA