
C A F - W O R K I N G PA P E R # 2 0 2 2 / 2 0

F i r s t v e r s i o n : O c t o b e r 2 8 , 2 0 2 2 ( c u r r e n t )

Comparing Protection Types in The Peruvian
Amazon: Multiple-Use Protected Areas Did No
Worse for Forests

Jimena Rico-Straffon1 | Zhenhua Wang2 | Alexander Pfaff3

1PhD Student, Department of
Economics, University of California,
Santa Barbara.
ricostraffon@ucsb.edu
2PhD Student, Department of
Statistics, University of Missouri.
zhenhua.wang@mail.missouri.edu
3Professor of Public Policy,
Economics and Environment,
Sanford School of Public Policy, Duke
University. alex.pfaff@duke.edu

Protected areas (PAs), which restrict economic activities, are
the leading land and marine policy for ecosystem conservation.
Most contexts feature different types of protection that vary in
their stringency of management. Using spatially detailed panel
data for 1986-2018, we estimate PAs’ impacts upon forests in the
Peruvian Amazon. Which type of protection has greater impacts
on the forest is ambiguous, theoretically, given potential for sig-
nificant differences by type in siting and enforcement. We find
that the less strict multiple-use PAs, that allow local livelihoods,
do no worse for forests than strict PAs: each PA type holds
off small loss spikes seen in unprotected forests; and multiple-
use, if anything, do a bit better. This adds to evidence on the
coexistence of private activities with conservation objectives.
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Las áreas naturales protegidas (ANPs), que restringen activi-
dades económicas, son las principales políticas para la conser-
vación de ecosistemas terrestres y marinos. Muchos contextos
cuentan con distintos tipos de protección que varían en su rigu-
rosidad. Utilizando datos panel con alta resolución espacial para
el periodo 1986-2018, estimamos los impactos de las ANPs en los
bosques de la Amazonía Peruana. Qué tipo de protección tiene
mayor impacto en el bosque es teóricamente ambiguo, dadas
las potenciales diferencias por tipo de ANP en su ubicación y
ejecución. Encontramos que las ANPs de usos múltiples (menos
estrictas) que permiten el desarrollo local no fueron peores para
los bosques que las estrictas: cada tipo de ANP bloquea alzas en
la deforestación en bosques no protegidos, e incluso las ANPs de
usos múltiples lo hacen un poco mejor. Este estudio contribuye
a la evidencia sobre la coexistencia entre actividades privadas y
los objetivos de conservación.
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1 | INTRODUCTION

Key roles for tropical forest in both species habitat and carbon storage motivate the con-
sideration of how global actors can support ongoing local provision of all of the local,
regional, and global public goods forests provide. The ongoing losses of tropical forests over
recent decades, globally (FAO, 2016), heightens the urgency of these concerns. Land-use
restrictions are one part of such strategies and protected areas (PAs) that limit the economic
activities within their boundaries are the leading ecosystem-conservation policy for forests
and marine ecosystems (Gill et al., 2022).

While PAs can generate ecological benefits by reducing rates of forest loss in different
contexts, at least on average with widely varying degrees of success (Andam et al., 2008;
Joppa and Pfaff, 2011; Pfaff et al., 2015; Herrera et al., 2019; Börner et al., 2020), their re-
strictions imply local costs which are not appreciated by firms and local forest dwellers
whose livelihoods depend on such ecosystems (Agrawal et al., 2008). Locally unappreciated
PAs may be more vulnerable to invasions to cut trees, in the context of low monitoring
and enforcement, such as when local agency headquarters are far from PAs (Albers, 2010;
Urrunaga et al., 2012). Thus, some have proposed that forest governance move toward cre-
ating more multiple-use PAs, which impose fewer restrictions than strict PAs, to allow local
smallholders to use the forest for economic activities and to play a role in PA management
(Agrawal et al., 2008).

Given the importance of PAs on forest frontiers, we investigate empirically for Peru’s
Amazon whether their multiple-use PAs conserved less or more forest than did the more
strict PAs which banned all extractive activities. On the one hand, multiple-use PAs poten-
tially could yield lower conservation, since they permit some economic activity to support
livelihoods, which generates forest loss. On the other hand, multiple-use PAs can conserve
better since allowing local benefit1 can forge cooperation that may enhance forest outcomes
by allowing a PA to be established then facilitating enforcement and monitoring. With low
enforcement, PAs may not conserve so much.

We estimate the impacts on rate of forest loss due to four types of public PAs in the
Peruvian Amazon. These four distinct types of protection vary in: i) land-use rights and
restrictions; ii) the governance level at which they are managed, national or regional; and
iii) their status, transitory or fully established. We generate the first estimates of the impacts
upon rates of forest loss due to the public PAs established after 2000 in the Peruvian Amazon,
which is the fourth-largest area of tropical forest globally, the country’s most important
timber region, and an eco-services hotspot.

We extend in two ways Miranda et al. (2016)’s evaluation of the impacts on forest
resulting from ten PAs established before 2000. First, we evaluate all PAs in our study area
that were created under a new regime, after Peru’s Natural Protected Area Act was enacted
in 1997. Second, we use space and time variation — in PA existence and the loss of forest
— to identify PAs impacts using a long annual panel of forest data (1986-2918) and new
difference-in-differences (DID) estimators that offer improved tests of parallel trends — the
main identification assumption.

To the best of our knowledge, we are first to: (i) estimate PA impacts on forest losses
using DID estimators robust to heterogeneity issues that affect the two-way fixed effects
(TWFE) estimators (de Chaisemartin and D’Haultfoeuille, 2020) that have been a workhorse
of panel analysis but are now recognized as facing specific challenges — as some of our
results support; and (ii) evaluate forest conservation policy using 33-year panel data as well
as a continuous forest-loss outcome, to avoid the biases related to using binary outcomes

1We do not verify empirically whether locals actually gain more economic benefits from multiple-use PAs, but
that has been the case at least for some contexts (Pfaff et al., 2014).



RICO-STRAFFON ET AL. 3

with panel data (Garcia and Heilmayr, 2022). Applying advances in forest data and DID,
our methods can guide the future evaluation of PAs.

Overall, we find limited forest gains from protected areas within this context for this
time period. Of further interest, we find that when comparing them with stricter protection,
multiple-use PAs which allowed some economic activities did not increase rates of forest
loss – if anything, these multiple-use PAs may have suffered lower losses (at least on a
basis of our preferred estimates, employing the new more robust DID estimators). When
PAs do appear to shift outcomes, for any type, it seems to have been by warding off the
temporary spikes in clearing of unprotected forest. That suggests some consistency of
results for economic activities coexisting with conservation, since that is precisely what was
found, on this very same forest frontier, for logging concessions – certified or not – which
allow regulated timber extraction by firms (Rico-Straffon et al., 2022).

The rest of this paper is as follows. Section 2 describes the setting, plus relevant prior PA
studies. Section 3 describes our data and empirical methods, Section 4 our results, discussed
in Section 5.

2 | BACKGROUND

2.1 | Peruvian Amazon Forests & PAs

Peru’s tropical forests are the second-largest in Latin America and the fourth-largest world-
wide (Rainforest Alliance, 2014), with over 70 million hectares in 2011 (Ministerio del
Ambiente, 2015). They host ecosystems which provide valuable goods and services such
as water supply, timber (cedar, mahogany), non-timber forest products, and biodiversity.
These forests also host over one thousand indigenous communities and fifty ethnic groups
(Ministerio del Ambiente and Ministerio de Agricultura, 2011). Forest losses in Peru have
been driven by productive activities that include logging and mining (legal and illegal), cat-
tle ranching, oil extraction, and agriculture – all facilitated by investments in infrastructure
(Laurance et al., 2001; DeFries et al., 2010).

The Peruvian Amazon is an important and sensible setting for evaluating PAs’ impacts,
given national and regional PAs with varied management, size, location, and accessibility
(Figure 1). Protection initially was always managed at the national level, but a Natural
Protected Area Act (Law No. 26834 of 1997) introduced a new regime that decentralized
the management of some protected areas by also recognizing regional and private PAs
(MINAM, 2016; República del Perú, 1997). The National Service of Natural Protected Areas
(SERNANP) is the institution in charge of regulating and managing protected areas in Peru,
including coordinating regional and local governments and private actors who are also in
charge of managing certain types of PAs (SERNANP, 2022b).

The Peruvian Amazon has four main types of public PAs. Indirect Use PAs are the
strictest form, allowing research, tourism, and recreation but no forms of resource extraction
or transformation (República del Perú, 1997). These strict PAs are managed at the na-
tional level and this category includes National Parks, National Sanctuaries, and Historical
Sanctuaries (SERNANP, 2022d).

Peru’s Amazon has three types of multiple-use PAs that are less strict, i.e., allow some
extraction. Direct Use PAs are also managed at the national level and also have subcategories
(Table 1) that all allow resource management and extraction by local communities in specific
areas defined by management plans (República del Perú, 1997). The specific activities
allowed and the degree of local communities’ involvement in PA management vary by
the subcategory of Direct Use PA. For example, Community Reserves are co-managed by
local communities and allow traditional and sustainable resource use, while the Hunting
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Reserves subcategory allows regulated sport hunting (SERNANP, 2022d). Another type
of multiple-use PAs is called Regional. These are managed at sub-national levels, i.e., by
regional governments and municipalities (República del Perú, 1997).

F I G U R E 1 Peruvian Amazon Post-1997 Protected Areas (PAs) of Different Types
Notes: This map shows the protected areas established in our study area (Loreto, Madre de Dios,
and Ucayali) in 1997 or later. Source: We produced this map using data from SERNANP (2022a).

Reserved Zones are the last type of multiple-use PAs. They are managed nationally but
they have a transitory status. They are in the process of becoming PAs, which can take
decades since Reserved Zones require further technical studies and negotiations with local
communities, industries, and governments before being fully established (Solano, 2010).
A Reserved Zone can become an Indirect Use PA and/or a Direct Use PA. For example,
Reserved Zone Güeppí in Loreto was established in 1997, then its area was divided into
three established PAs in 2012: one National Park (Indirect Use), as well as two Community
Reserves (Direct Use) (WWF, 2013). This is an example of local communities supporting



RICO-STRAFFON ET AL. 5

TA B L E 1 Types of Protection in the Peruvian Amazon

Category Type Level Extraction? Status PA

Subcategories

Indirect Use strict national no established National Parks

National Sanctuaries

Historical Sanctuaries

Direct Use multiple-use national yes, limited established Wildlife Refuges

National Reserves

Community Reserves

Protected Forests

Hunting Reserves

Scenic Reserves

Regional multiple-use subnational yes, limited established –

Reserved multiple-use national yes, limited in transition –

Source: Authors based on SERNANP (2022d).

PA establishment and contributing to forest protection. Local ethnic groups worked for 15
years to achieve this legal definition and to block illegal logging (WWF, 2013, 2010).

Since 1961, Peru’s government has created 254 national, regional, and private PAs
covering 29.6 million hectares of land and marine territory (SERNANP, 2022c). By August
of 2022, 18% of its land was covered by PAs (SERNANP, 2022c). Forests outside PAs include
logging concessions with limited timber extraction, non-timber concessions (e.g. Brazil nut,
rubber, petroleum), and native communities.

2.2 | PA Impacts

Studies in many other locations find that PAs reduce rates of forest loss, on average, although
the impact varies considerably with PA type, location, and enforcement (Andam et al., 2008;
Joppa and Pfaff, 2011; Pfaff et al., 2015; Herrera et al., 2019; Börner et al., 2020). They
often highlight that local residents oppose PA restrictions. Given a baseline landscape, in
which profits and forest clearing are higher when near to markets, private resistance to
establishment of a new PA tends to rise with the level of profit that would be surrendered.
Thus, new PAs tend to be pushed off to isolated frontiers where people are sparse and where
there is a lower probability of deforestation (Joppa and Pfaff, 2009) – which, in turn, limits
the conservation potential of the PAs.

This background is useful for considering why different types of protection could vary
in impacts — a priori, it may be impossible to rank these PA types by their conservation
effectiveness. Multiple-use PAs potentially could generate lower conservation than strict
PAs since they permit some economic activity to try to support livelihoods which can
generate forest loss. However, that very support could change local political attitudes about
allowing any PAs at all, including for regions within which there are enough people and
pressures to allow PAs to have impacts.

Further, those livelihood gains could motivate local actors to help to enforce such PAs.
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For example, Agrawal et al. (2008) find that local stakeholders allowed to benefit from
local forests acted in order to lower forest invasion. Thus, which type of PA helps forests
more is ambiguous. Enforcement is critical. If a PA allows economic gain by simply not
enforcing any restrictions, e.g., due to distant public agencies with weak monitoring, that PA
is not going to yield benefits from forest conservation. PAs that provide rights to a limited
group of private actors, allowing them to gain economically, could, in principle, generate
incentives for such actors to block others and thereby protect forest.

Finally, Reserved Zones are a special case, since they are not yet established PAs. They
could be just like other multiple-use PAs. They could instead be like unprotected forest –
with no impact relative to truly unprotected forest or, worse, locations where deforestation
rates rise, to extract before restrictions are enforced. Thus, it is difficult to be sure even of
the direction of impact for these areas.

3 | DATA & METHODS

3.1 | Data

3.1.1 | Protected Areas

We evaluate the 21 National Indirect-Use or Direct-Use PAs, Regional PAs, and Reserved
Zones established during 1997-2018 within the Peruvian Amazon regions of Madre de
Dios, Ucayali, and Loreto (Table A.1). We build on Miranda et al. (2016) who evaluated
pre-2000 public PAs in these regions, as well as Pasco and Huánuco regions, albeit using
solely cross-sectional analyses. We cannot examine many of those pre-2000 PAs, i.e., those
established before our forest data started (1986). We also exclude private PAs that are much
smaller, in private lands, managed by private actors who voluntarily seek conservation, and
established towards the end of the study period. We acquired publicly available data on the
PAs’ boundaries and characteristics from SERNANP.

3.1.2 | Forest Outcomes and Sample

Our main analysis uses public data from MapBiomas Amazon Project (2021), specifically
annual forest loss at a 30-meter resolution for the Peruvian Amazon forests (Madre de Dios,
Loreto, and Ucayali) during the period 1986-2018. To check robustness we use an alternative
outcome of annual tree-cover loss at a 30m resolution from the Global Forest Change data
(Hansen et al., 2013) that are widely used in such literature. Both forest data sources are
publicly available.

We compile annual panel data for large aggregate pixels (9000x9000m) covering all forest
areas inside and outside the 21 PAs and Reserved Zones in our study area. Our aggregate-
pixel unit of analysis implies continuous rates of forest loss. This avoids bias in previous
literature evaluating conservation policies using panel data with more spatially precise
pixels (30x30m) and a binary deforestation outcome (0 if the pixel has never been deforested,
1 the year the pixel is deforested after which without forest regrowth the outcome has
missing values (Garcia and Heilmayr, 2022)).

As some aggregated pixels are partially treated, we define any pixel as treated if over
95% of its area intersects with a PA or with a Reserved Zone created in 1997 or later.2 We
then drop pixels that partially intersect a PA or a Reserved Zone, i.e., with an intersection
between 0% and 95%. We restrict our control group to “fully untreated forests”, i.e., pixels

2We drop the pixels that fall within PAs or Reserved Zones created before 1997, the year when the Natural
Protected Areas Act was enacted.



RICO-STRAFFON ET AL. 7

that do not intersect any PA, Reserved Zone, logging concession or native community —
using data from WWF Peru in 2014 and 2015. The final balanced panel of aggregated pixels
for analyses includes 105,006 pixel-year observations for 1986-2018, of which 39,327 (37%)
were ever treated in a PA or Reserved Zone.

3.2 | Empirical Strategy

3.2.1 | New DID Estimators (lead results)

The traditional TWFE specification — as discussed just below for robustness and comparison
— identifies treatment effects when the assumption of “parallel trends” holds. That is true
here too. Recent literature shows another important TWFE assumption is homogeneous
treatment effects across all of the spatially distinct groups — which are aggregated pixels
for us — and over time (de Chaisemartin and D’Haultfoeuille, 2020). Those assumptions
are unlikely to hold.

The new DID papers point out that one can see TWFE estimators as weighted sums of
treatment effects for each group-year cell (de Chaisemartin and D’Haultfoeuille, 2020) which
yield biases if treatment effects are heterogeneous – as some underlying effects from some
group-year cells could receive negative weights (Callaway and Sant’Anna, 2021; de Chaise-
martin and D’Haultfoeuille, 2020; Sun and Abraham, 2021). Also, de Chaisemartin and
D’Haultfoeuille (2022a) found that when a TWFE regression includes multiple treatments,
the TWFE estimators for each treatment can be biased by the effects of another treatment. In
our setting, ‘contamination’ could be quite relevant when estimating the effects of protected
areas that were Reserved Zones before becoming PAs.

Our main results use de Chaisemartin and D’Haultfoeuille (2021, 2022a)’s DID estimators
(DIDL), since they are robust to heterogeneous treatment effects and to contamination across
treatments. We compare those results with TWFE for robustness including to understand
effects of weights.

As all National PAs but two Direct-Use PAs were Reserved Zones before becoming
official PAs, we follow a strategy in de Chaisemartin and D’Haultfoeuille (2022a) to isolate
the effects of those Reserved Zones. We restricted observations to those pixel-year cells
where the PA treatment was not yet active, and then employed their DIDL strategy to
estimate the effects of the Reserved Zones.

3.2.2 | Two-Way Fixed Effects (robustness check)

Our two-way fixed effects (TWFE) specification, employed to evaluate the forest impact
of each type of protections by using our ‘super pixel’ panel to compare forests inside and
outside PAs, is:

Lit = β0 +β1PAit +αi + λt + εit (1)

where Lit is the share of forest in super-pixel i deforested during year t; and PAit = 1 if
the PA for pixel i was active in year t, and zero otherwise. We run this for each PA type in
the study area. We cluster our standard errors with the PA ID if a pixel is in a PA, in order
to account for spatial autocorrelation within the PA, but using the pixel ID instead when the
pixel falls outside PAs.3

3Here we assume that spatial autocorrelation is limited in untreated forests since we do not have a more
aggregate geographical unit in such forests that is analogous to PA polygons.
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3.2.3 | Pre-Estimation Matching (checking past outcomes for ’similarity’)

Multiple evaluations of PA impacts have matched treated with untreated pixels based on
various observed characteristics of forested lands. This started with fixed geographic charac-
teristics (e.g., Andam et al. (2008); Joppa and Pfaff (2011)) that are relevant for deforestation
rates such as distances to cities, distances to roads, the quality of the soil, the slope of the
land, rainfall levels, and more.

However, many unobserved characteristics affect deforestation rates. Thus, while match-
ing on observed characteristics improves similarity of parcels – at the least in terms of those
observed characteristics – it does not guarantee forest trends will be parallel between any
treated parcel of forest and some potential controls. Further, the synthetic-control literature
(e.g. Arkhangelsky et al. (2021); Ben-Michael et al. (2021)) has pushed forward on using
pre-treatment outcomes as the basis for matching units, in that case to find good compar-
isons for single spatial units receiving treatments of interest, in order to better evaluate
treatment impacts. Putting all that together, we believe that using pre-treatment outcomes
for matching the treated pixels with untreated pixels, before constructing the panel analyses,
could help to generate data sets featuring parallel trends.

MapBiomas data offer forest observations at least 11 years before PAs are established as
well as up to 18 years after PAs become active, which helps to find a better control group
and to test the critical identifying assumption of parallel trends. We match aggregated pixels
that eventually are in a PA with those that were never inside a PA using Propensity Score
Matching with replacement and three neighbors based on forest-loss rates before the PA was
established. We do so for each type of protection, including Reserved Zones. We use such
matched samples to construct an aggregated pixel-by-year panel for each PA type. Section 4
shows that matching on pre-treatment forest losses (Figures 2b, 3b, 4b, 5b) resulted in large
improvements in terms of parallel trends, relative to no matching (Figures 2a 3a, 4a, 5a).

As matching on pre-treatment outcomes does not guarantee past forest loss trends will
be parallel across the treated versus the control units, we test formally the plausibility of
the parallel trends identifying assumption. We do so with a joint significance test for the
DIDL placebo estimators (which also are robust to both heterogeneous treatment effects
and dynamic treatment effects), using the null that all placebo estimators are zero, i.e., of no
differences in pre-treatment trends.

4 | RESULTS

We present the estimated forest loss impacts of each type of protected area and/or reserved
zone. We lead with new DID results, given all of the arguments above concerning its
superiority under realistic conditions. We also, though, consider TWFE results, which
generally are quite similar – then we mention several variations and robustness checks
which are included in the Appendices.

4.1 | Indirect-Use (Strict) PAs

We employ DIDL to estimate the effects of Indirect-Use PAs on forest loss. We utilize a
sample of pixels after matching on pre-2001 forest-loss levels (the first Indirect-Use PA was
established in 2001 (Table A.1)). We start by checking the plausibility of parallel trends,
i.e., identification. We find evidence supporting that assumption when we include up to
six placebo estimators, and note that all six placebo estimators (to the left of t=0, Figure
2c) are close to zero and are not statistically significant. A test of these six placebos’ joint
significance fails to reject the null (p-value=0.94). Thus, we show up to six dynamic effects,
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i.e. the effects of Indirect-Use PAs 6 years after having started. This blends all the PA cohorts,
i.e., PAs established in different years.
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(c) Indirect-Use PAs’ Forest Loss Impacts (DIDL)

F I G U R E 2 Forest Loss Inside vs. Outside Indirect-Use PAs & Resulting Impact Estimates.
Notes: Panels A and B show mean annual forest loss trends and 95 percent confidence intervals for
different samples of forested pixels in our study area during 1986-2018 by protection status (PA=1
if ever inside an Indirect-Use PA, and 0 for never treated pixels). The dashed vertical line indicates
1997, the first year a Reserved Zone was declared that eventually became an Indirect-Use PA.
The solid vertical line indicates 2001, the first year that an Indirect-Use PA was established in our
sample. We calculated forest loss rates from Collection 5 of MapBiomas Amazon Project (2021).
Panel C plots the DIDL point estimates across event time (i.e., years relative to the first change in
PA status) for Indirect-Use PAs using the matched sample of pixels in Panel B. Standard errors
are clustered by pixel ID or PA ID for treated and untreated pixels respectively.

We find the instantaneous effect of Indirect-Use PAs on forest loss (i.e. at t = 0) and
all dynamic effects (to the right of t = 0, Figure 2c) are slightly negative. That suggests an
average reduction in forest loss of at most 0.1% per year, i.e., any effect we find is small in
magnitude. We also estimate an average effect using DIDL, for Indirect-Use PAs’ influences
on forest losses. The DIDLaverage effect is a weighted sum of the instantaneous and the 6
dynamic DIDL effects. We find that the estimated average effect of changing a pixel from
untreated (not a PA) to treated in an Indirect-Use PA form, for seven years, is -0.061% (Table
2). That is equivalent to 3/100 of a standard deviation of the annual forest loss rates during
1986-2018 in our sample (mean=0.32, SD=1.80). This estimated effect is not statistically
significant at the 5% level (SE=0.056).
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4.2 | Direct-Use (Multiple-Use) PAs

We also employ DIDL to estimate the effects on forests of Direct-Use PAs here using a
sample of pixels matched on pre-2000 loss levels since the first Direct-Use PA was granted
in 2000 (see Table A.1). We find that all of these placebo estimators are close to zero and are
not statistically significant (to the left of t = 0, Figure 3c). A joint test of significance fails
to reject the null with up to 10 placebo estimators (p-value = 0.477); thus, we estimate 10
dynamic effects.
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(c) Direct-Use PAs’ Forest Loss Impacts (DIDL)

F I G U R E 3 Forest Loss Inside vs. Outside Direct-Use PAs & Resulting Impact Estimates.
Notes: Panels A and B show mean annual forest loss trends and 95 percent confidence intervals
for different samples of forested pixels in our study area during 1986-2018 by protection status
(PA=1 if ever inside a Direct-Use PA, and 0 for never treated pixels). The dashed vertical line
indicates 1990, the first year a Reserved Zone was declared that eventually became a Direct-Use
PA. The solid vertical line indicates 2000, the first year that a Direct-Use PA was established in
our sample. We calculated forest loss rates from Collection 5 of MapBiomas Amazon Project
(2021). Panel C plots the DIDL point estimates across event time (i.e., years relative to the first
change in PA status) for Direct-Use PAs using the matched sample of pixels in Panel B. Standard
errors are clustered by pixel ID or PA ID for treated and untreated pixels respectively.

For the estimated forest impacts of Direct-Use PAs, we observe that the instantaneous
effect on forest loss is close to zero. All of the dynamic effects (to the right of t=0, Figure
3c) are slightly negative (less than -0.5%) except for the fifth and tenth dynamic effects.
The average effect of Direct-Use PAs is a reduction in forest loss of 0.10%, which is not
statistically significant (SE= 0.089). We note that the magnitude of the effect is larger than
that of Indirect-Use PAs, though, suggesting that Multiple-Use PAs do at least as much to
protect forests as Strict PAs.
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4.3 | Regional PAs

We again employ DIDL to estimate the effects of Regional PAs, here matched on pre-2009
losses as the first Regional PA was granted in 2009 (see Table A.1). We find that almost
all the placebo estimators are close to zero and not statistically significant (to the left of
t=0, Figure 4c) except placebo 2 which is small and positive. A test of these placebos’ joint
significance rejects the null hypothesis (p-value 0.002), yet a weaker version using first-
difference placebos does not reject the null for up to 9 placebos (p-value=0.141, Figure B.1).4

Thus, we have included 9 dynamic effects.
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(c) Regional PAs’ Forest Loss Impacts (DIDL)

F I G U R E 4 Forest Loss Inside vs. Outside Regional PAs & Resulting Impact Estimates.
Notes: Panels A and B show mean annual forest loss trends and 95 percent confidence intervals
for different samples of forested pixels in our study area during 1986-2018 by protection status
(PA=1 if ever inside a Regional PA, and 0 for never treated pixels). The solid vertical line indicates
2009, the first year that a Regional PA was established in our sample. We calculated forest loss
rates from Collection 5 of MapBiomas Amazon Project (2021). Panel C plots the DIDL point
estimates across event time (i.e., years relative to the first change in PA status) for Regional PAs
using the matched sample of pixels in Panel B. Standard errors are clustered by pixel ID or PA ID
for treated and untreated pixels respectively.

For the impacts on rates of forest loss due to these Regional PAs, the instantaneous effect
upon forest loss is close to zero, while all of the dynamic effects (to the right of t=0, Figure
4c) are negative, except for dynamic effect 4. We see effects 2 and 5-9 are negative and
statistically significant at the 5% level, however the magnitudes are small, suggesting a
reduction of less than 0.2% per year. The estimated average effect of these Regional PAs is a
reduction in forest loss of 0.039%, although that is not statistically significant (SE=0.025). This

4You can see more details of these placebos estimators in de Chaisemartin and D’Haultfoeuille (2021).
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result certainly suggests, though, that allowing economic activities in Regional multiple-use
PAs did not harm the forest.

4.4 | Reserved Zones

We employ DIDL to estimate the effects of Reserved Zones. We matched them using pre-
1997 loss rates, as the first Reserved Zones in our study area were established in 1997 (see
Table A.1). As most Reserved Zones eventually became Direct-Use and/or Indirect-Use PAs,
we eliminate the pixel-year observations where either of these PAs were already active to
isolate the effect of Reserved Zones (as generically recommended by de Chaisemartin and
D’Haultfoeuille (2022a)).
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(c) Regional PAs’ Forest Loss Impacts (DIDL)

F I G U R E 5 Forest Loss Inside vs. Outside Reserved Zones & Resulting Impact Estimates.
Notes: Panels A and B show mean annual forest loss trends and 95 percent confidence intervals
for different samples of forested pixels in our study area during 1986-2018 by protection status
(PA=1 if ever inside a Reserved Zone, and 0 for never treated pixels). The solid vertical line
indicates 2009, the first year that a Reserved Zone was established in our sample. We calculated
forest loss rates from Collection 5 of MapBiomas Amazon Project (2021). Panel C plots the DIDL

point estimates across event time (i.e., years relative to the first change in PA status) for Reserved
Zones using the matched sample of pixels in Panel B. Standard errors are clustered by pixel ID or
PA ID for treated and untreated pixels respectively.

We find that all of the placebo estimators are very close to zero. Also, the joint significance
test of 9 placebos does not reject the null (p-value=0.994). We also find that the instantaneous
and all dynamic effects on forest loss of Reserved Zones are near zero, especially close to the
treatment (Figure 5c). We see that the estimated average effect of Reserved Zones is a small
but insignificant rise in forest loss of 0.016% per year (SE=0.107). These are not yet protected
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areas, and they allow multiple economic activities, which makes them the least restrictive
multiple-use PAs in our sample. However, we do not find evidence of them harming the
forest in this period.

TA B L E 2 DIDL and TWFE Estimators of Forest Loss Impacts of Different PA Types

Estimator Average Effect S.E. N P-value Joint Placebo Test

Panel A. Indirect-Use PAs

DIDL -0.061 0.056 39,748 0.940

TWFE -0.082 0.018 49,038 –

Panel B. Direct-Use PAs

DIDL -0.100 0.089 35,397 0.477

TWFE -0.003 0.054 20,922 –

Panel C. Regional PAs

DIDL -0.039 0.025 14,652 0.141

TWFE -0.018 0.012 20,625 –

Panel D. Reserved Zones

DIDL 0.016 0.107 53,682 0.994

TWFE -0.019 0.013 47,626 –

Notes: We present the results of both de Chaisemartin and D’Haultfoeuille (2021) average DIDL

estimator and the two-way fixed effects (TWFE) estimator of the forest loss impacts of each PA
type created in 1997 or later in the Peruvian Amazon (Loreto, Madre de Dios, and Ucayali). We
estimated a separate model for each PA type and each estimator. Recall that these estimators
are different methods for making use of different subsets of the panel data set (i.e. DIDL

selects particular transitions for comparisons to compute each instantaneous and dynamic effect
underlying these average effects). Thus, the sample size differs. We present a trimmed average
DIDL estimator using the same number of long-difference placebos and dynamic effects as
in Figures (Figures 2c, 3c, 4c, 5c). The last column shows the p-value of a joint significance
test of the long-difference placebo estimators for each treatment except for Regional PAs– we
present the one for the test using first-difference estimators since the former test rejected the null
(p-value=0.002). We ran the TWFE regression in equation 1 for each treatment and found that one
of the ATTs in the TWFE estimators receive negative weights, except for the one for Indirect-Use
PAs, where less than 1% of the ATTs receive a negative weight. We clustered standard errors at
the pixel level for untreated pixels and at the PA level for treated pixels. We calculate forest loss
from Collection 5 of MapBiomas Amazon Project (2021).

4.5 | Robustness Checks

We estimated TWFE regressions for each PA type and the main conclusion does not change:
multiple-use PAs do not increase forest loss rates on average (Table 2 and Figure 6). Though
we generally did not find negative weights in the TWFE estimators,5 these estimated effects
differed in magnitude from the average DIDL estimators. Our preferred specification is
DIDL because the TWFE estimator does not estimate the average treatment effect on the
treated even under parallel trends if we have variation in the treatment year (de Chaise-
martin and D’Haultfoeuille, 2022b).

In addition, we ran a robustness check changing the outcome to Hansen et al. (2013)’s

5We found zero negative weights for all PA types except for Indirect Use PAs, which had less than 1% of
group-year effects receiving negative weights.
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tree- cover loss rates and we found similar results (Figure B.2). With these data, however,
the effects of all PA types on tree-cover loss using both DIDL and TWFE are negative and
statistically significant at the 5% level — except for the Regional PAs’ average DIDL effect,
which is not significant.

Indirect-Use PA, DID

Indirect-Use PA, TWFE

Regional PA, DID

Regional PA, TWFE

Direct-Use PA, DID

Direct-Use PA, TWFE

Reserved Zones, DID

Reserved Zones, TWFE

Uncertified Concessions, DID

Uncertified Concessions, TWFE

-.3 -.2 -.1 0 .1 .2
Effect on forest loss rates (% change)

F I G U R E 6 Summary of Effects with MapBiomas Outcome and DIDL Estimator
Notes: This figure shows de Chaisemartin and D’Haultfoeuille (2021)’s DIDL estimator of the
average total effect of each forest intervention on forest loss rates. We compare these estimates of
the impacts of the four types of protected areas (PAs) analyzed in this paper to the impacts of
logging concessions estimated in Rico-Straffon et al. (2022) using the same data and methods for
the same study area and study period. The spatial unit is 9x9 km for PAs and reserved zones, 3x3
km for uncertified concessions. We also present the TWFE estimator of the forest loss impacts of
each intervention. For all estimators and policies, we cluster standard errors at the forest policy
level for pixels within the boundaries of a protected area or a concession, and at the pixel level
for untreated pixels. For each estimator, the graph shows the point estimate in a circle, as well as
the 90% and 95% confidence intervals, in dark and lighter color respectively.
Source: We calculated forest loss rates using Collection 5 of MapBiomas Amazon Project (2021).

5 | DISCUSSION

We estimated the impacts upon annual forest-loss rates due to each of multiple types of
protected areas for an important forest region, the Peruvian Amazon, and for a time period
that is appropriate for shedding light upon ongoing conservation policy choices, 1986-2008.
For both methodological and novelty reasons, we focus on PAs established after the 1997
Natural Protected Areas Act (a new regime), for which we have at least 11 years of pre-
protection data on forests. Alongside new DID estimators for panel data sets, the data allow
better tests of the key identifying assumption within panel estimation — parallel trends —
and thus more defensible estimates of forest impacts.

We found limited impacts. While public tenure did not open the doors to free-for-all
extraction, i.e., ‘unclaimed space’ in PAs did not hurt forests, still these PAs’ forest benefits
are small. That tended to be uniformly true, across types of PAs we evaluated — meaning
the strict Indirect-Use PAs and three types of multiple-use PAs (Direct-Use PAs, Regional
PAs, and Reserved Zones).

We note that, at least for our leading DID estimates, it appears that allowing officially
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for some limited smallholder activity within the Direct-Use PAs did not do worse for forests
than did the strict Indirect-Use PAs. If anything, in estimates using the longest data sets
and the most bias-reducing approaches, Direct-Use PAs appear to have performed just a
bit better. While for this setting we must summarize that different PA types had similar
conservation impacts, these results imply at the least that a PA type aimed at improving
livelihoods (i.e., multiple-use) did not harm forests. That is consistent with Rico-Straffon
et al. (2022)’s estimates of impacts from logging concessions in Peru (estimated impacts
using the same underlying data and DIDL are juxtaposed in Figure 6).

These PAs impacts, and gradient by PA type, were quite robust to varying estimators
and data. Concerning these estimators, for our results TWFE findings often were quite
similar to DIDL’s. Concerning data sets, while we tested not only far longer MapBiomas
data but also widely used Hansen data, we believe newly available degradation data could
add to analyses of PA impacts. Further, while we averaged results across the Peruvian
Amazon, future analyses could explore policy relevant variations – for any PA type — e.g.,
for high versus low deforestation pressures.
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A | PROTECTED AREAS IN OUR STUDY AREA AND STUDY PERIOD

TA B L E A . 1 Protected Areas in our Study Area and Study Period by Type

Name Category Year Reserved Year PA Region(s)

Tambopata Direct 1990 2000 MDD

Cordillera Azul Indirect 2000 2001 Loreto & Ucayali

El Sira Direct – 2001 Ucayali

Amarakaeri Direct 2000 2002 MDD

Allpahuayo Mishana Direct 1999 2004 Loreto

Alto Purús Indirect 2000 2004 MDD & Ucayali

Purús Direct 2000 2004 Ucayali

Comunal Tamshiyacu Tahuayo Regional – 2009 Loreto

Matsés Direct – 2009 Loreto

Ampiyacu Apayacu Regional – 2010 Loreto

Imiria Regional – 2010 Ucayali

Pucacuro Direct 2005 2010 Loreto

Alto Nanay- Pintuyacu Chambira Regional – 2011 Loreto

Airo Pai Direct 1997 2012 Loreto

Güeppí-Sekime Indirect 1997 2012 Loreto

Huimeki Direct 1997 2012 Loreto

Maijuna Kichwa Regional – 2015 Loreto

Sierra del Divisor Indirect 2006 2015 Loreto & Ucayali

Yaguas Indirect 2011 2018 Loreto

Santiago Comaina Reserved 1999 – Loreto

Sierra del Divisor Reserved 2006 – Loreto

Note: MDD stands for Madre de Dios.
Source: We created this table using information from SERNANP (2022d).
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B | OTHER TABLES AND FIGURES
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F I G U R E B . 1 First-Difference Placebos of Regional Protected Area’s Effects (DIDL)
Notes: This figure shows the first difference placebos of the effects of Regional Protected Areas
(PAs) on forest loss rates. See more details in de Chaisemartin and D’Haultfoeuille (2021). The
p-value of the joint significance test of such placebos is 0.14.
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F I G U R E B . 2 Summary of Effects with Hansen et al. (2013) Tree-Cover Loss
Notes: This figure shows de Chaisemartin and D’Haultfoeuille (2021)’s DIDL estimator of the
average total effect of each of the four types of Protected Areas on tree-cover loss rates. We
compare these estimates of the impacts of the four types of protected areas (PAs) analyzed in
this paper to the impacts of logging concessions estimated in Rico-Straffon et al. (2022) using the
same data and methods for the same study area and study period. The spatial unit is 9x9 km for
PAs and reserved zones, 3x3 km for uncertified concessions. We also present the TWFE estimator
of the tree-cover loss impacts of each intervention. For all estimators and policies, we cluster
standard errors at the forest policy level for pixels within the boundaries of a protected area or a
concession, and at the pixel level for untreated pixels. For each estimator, the graph shows the
point estimate in a circle, as well as the 90% and 95% confidence intervals, in dark and lighter
color respectively.
Source: We calculated forest loss rates using Hansen et al. (2013)’s Global Forest Change data.
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